Harmonic Analysis on Finite Abelian Groups
نویسنده
چکیده
We give a discussion of harmonic analysis on finite abelian groups, emphasizing various ways in which the structure of the group is encoded on various spaces of functions, ways in which the Fourier transform detects and preserves these structures. We discuss the major tools, like convolutions and Fourier transforms, along with some fundamental theorems, like the Plancheral, Parseval, Fourier inversion, and Poisson summation formulas, and fundamental heuristic principles, like the uncertainty principle. We originally intended to cover some applications Fourier analysis on finite abelian groups to number theory, and to cover the Fast Fourier transform, but did not get a chance to include these yet.
منابع مشابه
On the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملHarmonic analysis and a bentness-like notion in certain finite Abelian groups over some finite fields
It is well-known that degree two finite field extensions can be equipped with a Hermitian-like structure similar to the extension of the complex field over the reals. In this contribution, using this structure, we develop a modular character theory and the appropriate Fourier transform for some particular kind of finite Abelian groups. Moreover we introduce the notion of bent functions for fini...
متن کاملBent functions on a finite nonabelian group
We introduce the notion of a bent function on a finite nonabelian group which is a natural generalization of the well-known notion of bentness on a finite abelian group due to Logachev, Salnikov and Yashchenko. Using the theory of linear representations and noncommutative harmonic analysis of finite groups we obtain several properties of such functions similar to the corresponding properties of...
متن کاملOn $m^{th}$-autocommutator subgroup of finite abelian groups
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006